## Discovering Sum Ways of Expressing 981

34 ${ }^{\text {th }}$ Eastern Shore High School Mathematics Competition

Jathan Austin

jwaustin@salisbury.edu

## A Problem

Find digits $\mathrm{A}, \ldots, \mathrm{I}$ such that

1. $\mathrm{ABC}+\mathrm{DEF}=\mathrm{GHI}$,
2. A through I are distinct,
and 3. Each of $1,2, \ldots, 9$ is used exactly once.
$218+349=567$

How many solutions are there to this problem?

## Possible Approaches

- Count the number of possible sums
- Count the number of possible addends
- Count how many solutions there are for a given sum

$$
\begin{array}{ll}
218+349=567 & 219+348=567 \\
248+319=567 & 249+318=567
\end{array}
$$

## Possible Approaches

- Count the number of possible sums
- Count the number of possible addends
- Count how many solutions there are for a given sum

$$
\begin{array}{ll}
218+349=567 & 219+348=567 \\
248+319=567 & 249+318=567
\end{array}
$$

## A Little Counting

$9(8)(7)=5043$-digit numbers containing no 0's such that all 3 digits are distinct.


## A Little Counting

$9(8)(7)=5043$-digit numbers containing no 0's such that all 3 digits are distinct.

But...the first digit of the sum cannot be 1 and cannot be 2. (Why not?)

## What Else Can We Say?

The first digit cannot be 3 either:

1BC
$+2 E F$
3HI
B + E $<10$
So, $\{B, E\}=\{4,5\}$ and $H=9$. $\{C, F, I\}=\{6,7,8\}$ is impossible.

## What Else Can We Say?

$6(8)(7)=3363$-digit numbers containing no 0's such that all 3 digits are distinct and the first digit is at least 4.

What else can we say?

## Some Modular Arithmetic

We can use modular arithmetic to help.

Think remainders:
"7 is congruent to $1 \bmod 3 "$
means
$7 \div 3$ has a remainder of 1

## Some Modular Arithmetic

We can use modular arithmetic to help.

Think remainders:
" 8 is congruent to $22 \bmod 3 "$
means
$8 \div 3$ has a remainder of 2

## Some Modular Arithmetic

We can use modular arithmetic to help.

Think remainders:
"24 is congruent to $0 \quad \bmod 3 "$
means
$24 \div 3$ has a remainder of 0

## Some Modular Arithmetic

We can use modular arithmetic to help.

Think remainders:

Any integer will be congruent to either 0,1 , or $2 \bmod 3$.

## Some Modular Arithmetic

How can we do arithmetic "mod 3?"

What is $7+10$ congruent to mod 3 ?

$$
\begin{gathered}
7 \equiv 1(\bmod 3) \\
10 \equiv 1(\bmod 3) \\
\text { So, } 7+10 \equiv 1+1(\bmod 3) .
\end{gathered}
$$

## Some Modular Arithmetic

How can we do arithmetic "mod 3?"

What is $7(10)$ congruent to mod 3 ?

$$
\begin{gathered}
7 \equiv 1(\bmod 3) \\
10 \equiv 1(\bmod 3) \\
\text { So, } 7(10) \equiv 1(1)(\bmod 3) .
\end{gathered}
$$

## Back to the Problem

## $\mathrm{ABC}+\mathrm{DEF}=\mathrm{GHI}$

$$
\begin{gathered}
100 \mathrm{~A}+10 \mathrm{~B}+\mathrm{C}+100 \mathrm{D}+10 \mathrm{E}+\mathrm{F}=100 \mathrm{G}+10 \mathrm{H}+\mathrm{I} \\
\mathrm{~A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}+\mathrm{F} \equiv \mathrm{G}+\mathrm{H}+\mathrm{I}(\bmod 3)
\end{gathered}
$$

Also,

$$
\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}+\mathrm{F}+\mathrm{G}+\mathrm{H}+\mathrm{I}=1+\ldots+9=45 \equiv 0(\bmod 3)
$$

What could $\mathrm{A}+\ldots+\mathrm{F}$ and $\mathrm{G}+\mathrm{H}+\mathrm{I}$ be congruent to $\bmod 3$ ?

$$
\begin{aligned}
& 1: \mathrm{A}+\ldots+\mathrm{F}+\mathrm{G}+\mathrm{H}+\mathrm{I} \equiv 1+1(\bmod 3) \mathrm{NO} \\
& 2: \mathrm{A}+\ldots+\mathrm{F}+\mathrm{G}+\mathrm{H}+\mathrm{I} \equiv 2+2(\bmod 3) \mathrm{NO}
\end{aligned}
$$

So, $\mathrm{G}+\mathrm{H}+\mathrm{I} \equiv 0(\bmod 3)$.

## Back to the Problem

## $\mathrm{ABC}+\mathrm{DEF}=\mathrm{GHI}$

So, $G+H+I \equiv 0(\bmod 3)$.

This means that our sum $\mathrm{GHI} \equiv 0(\bmod 3)$ also.

Remember that a whole number is divisible by three when the sum of its digits is divisible by three.

## More Modular Arithmetic

$100 \mathrm{~A}+10 \mathrm{~B}+\mathrm{C}+100 \mathrm{D}+10 \mathrm{E}+\mathrm{F}=100 \mathrm{G}+10 \mathrm{H}+\mathrm{I}$

$$
\begin{gathered}
A-B+C+D-E+F \equiv G-H+I(\bmod 11) \\
A+C+D+F+H \equiv B+E+G+I(\bmod 11)
\end{gathered}
$$

$$
\mathrm{A}+\ldots+\mathrm{I} \equiv 2(\mathrm{~B}+\mathrm{E}+\mathrm{G}+\mathrm{I})(\bmod 11)
$$

$$
2(\mathrm{~B}+\mathrm{E}+\mathrm{G}+\mathrm{I}) \equiv 1(\bmod 11)
$$

? $\mathrm{B}+\mathrm{E}+\mathrm{G}+\mathrm{I} \equiv 6(\bmod 11)$

## More Modular Arithmetic

$\mathrm{B}+\mathrm{E}+\mathrm{G}+\mathrm{I} \equiv 6(\bmod 11)$<br>Look at B, E, and H:

We will have different cases based on whether we need to carry from the ones place or to the hundreds place.

## More Modular Arithmetic

$$
\begin{aligned}
& \mathrm{B}+\mathrm{E}+\mathrm{G}+\mathrm{I} \equiv 6(\bmod 11) \\
& \text { Look at } \mathrm{B}, \mathrm{E}, \text { and } \mathrm{H}:
\end{aligned}
$$

ABC +DEF GHI

| B, E, H <br> relationship | Carry? |  |
| :--- | :--- | :--- |
| B + E = H | None |  |
|  |  |  |
|  |  |  |
|  |  |  |

## More Modular Arithmetic

$$
\begin{aligned}
& \mathrm{B}+\mathrm{E}+\mathrm{G}+\mathrm{I} \equiv 6(\bmod 11) \\
& \text { Look at } \mathrm{B}, \mathrm{E} \text {, and } \mathrm{H}:
\end{aligned}
$$

ABC +DEF GHI

| B, E, H <br> relationship | Carry? |  |
| :--- | :--- | :--- |
| $\mathrm{B}+\mathrm{E}=\mathrm{H}$ | None |  |
| $\mathrm{B}+\mathrm{E}+1=\mathrm{H}$ | From Ones Place Only |  |
|  |  |  |
|  |  |  |

## More Modular Arithmetic

$$
\begin{aligned}
& \mathrm{B}+\mathrm{E}+\mathrm{G}+\mathrm{I} \equiv 6(\bmod 11) \\
& \text { Look at } \mathrm{B}, \mathrm{E} \text {, and } \mathrm{H}:
\end{aligned}
$$

ABC +DEF GHI

| B, E, H <br> relationship | Carry? |  |
| :--- | :--- | :--- |
| $B+E=H$ | None |  |
| $B+E+1=H$ | From Ones Place Only |  |
| $B+E=H+10$ | To Hundreds Place Only |  |
|  |  |  |

## More Modular Arithmetic

$$
\begin{aligned}
& \mathrm{B}+\mathrm{E}+\mathrm{G}+\mathrm{I} \equiv 6(\bmod 11) \\
& \text { Look at } \mathrm{B}, \mathrm{E} \text {, and } \mathrm{H}:
\end{aligned}
$$

ABC +DEF GHI

| B, E, H <br> relationship | Carry? |  |
| :--- | :--- | :--- |
| $B+E=H$ | None |  |
| $B+E+1=H$ | From Ones Place Only |  |
| $B+E=H+10$ | To Hundreds Place Only |  |
| $B+E+1=H+10$ | From Ones Place and to <br> Hundreds Place |  |

## More Modular Arithmetic

$$
\begin{aligned}
& \mathrm{B}+\mathrm{E}+\mathrm{G}+\mathrm{I} \equiv 6(\bmod 11) \\
& \text { Look at } \mathrm{B}, \mathrm{E} \text {, and } \mathrm{H}:
\end{aligned}
$$

ABC +DEF

GHI

| B, E, H <br> relationship | Carry? | Value of G + H + I |
| :--- | :--- | :--- |
| $\mathrm{B}+\mathrm{E}=\mathrm{H}$ | None | $6(\bmod 11)$ |
| $\mathrm{B}+\mathrm{E}+1=\mathrm{H}$ | From Ones Place Only | $7(\bmod 11)$ |
| $\mathrm{B}+\mathrm{E}=\mathrm{H}+10$ | To Hundreds Place Only | $7(\bmod 11)$ |
| $\mathrm{B}+\mathrm{E}+1=\mathrm{H}+10$ | From Ones Place and to <br> Hundreds Place | $8(\bmod 11)$ |

## Back to the Problem

$$
\begin{gathered}
412 \leq \mathrm{GHI} \leq 987 \\
7 \leq \mathrm{G}+\mathrm{H}+\mathrm{I} \leq 24
\end{gathered}
$$

and $\mathrm{G}+\mathrm{H}+\mathrm{I}$ is a multiple of 3 .

$$
9,12,15,18,21,24
$$

Also, $\mathrm{G}+\mathrm{H}+\mathrm{I}$ must be congruent to 6,7 , or 8 $\bmod 11$.
So, G + H + I = 18 .

## Possible Sums

| 459 | 468 | 486 | 495 | 549 | 567 | 576 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 594 | 639 | 648 | 657 | 675 | 684 | 693 |
| 729 | 738 | 756 | 765 | 783 | 792 | 819 |
| 837 | 846 | 864 | 873 | 891 | 918 | 927 |
| 936 | 945 | 954 | 963 | 972 | 981 |  |

(Three of these don't work. Which ones?)

## 981

$235+746=981$
$236+745=981$
$245+736=981$
$246+735=981$
$324+657=981$
$327+654=981$
$354+627=981$
$357+624=981$

## How many solutions are there in all? What are they?

## Try it!

Thank you!
jwaustin@salisbury.edu

