Introduction
National Assessment of Education Progress (NAEP) results indicaet end madial school stuad ants rave somed dificuity tinding the
mean and median. Students at all grade levels have considerable difificulty knowing how to use statistical measures of ce
appropriately (Zawojewski \& Shaughnessy, 2000).

The purpose of the study was to explore and develop students
thinking about graphical representations of data and tinding thinking about graphical reperesentations of datata and finding
appropriate measures of center. For example, in the problem belo

Research question: How can students' proficiency in regard to
Grade 6 Common Core Mathematics Standards about statistical measures of center be developed?

Initial Assessment Results (Week 1)

 Overall most of hhe studentstcame to finding typical values

Millie lacked conceptual understanding when representing data and trying to interpret data from dot plots. She had strong strategic
competence when it comes to comparing statistical measures competence when it comes to comparing statistical measures. In the
excerpt below you will see that Millie was able to choose the median excerpt below you wiil see that Mililie was able to choose the median as
the best representation because most of the numbers were closer to it.
EH: Which statistic, the mean or the median would you use to describe EE: Which statistic, the mean or the median would yo
the typical dailiy attendance for the 5 day at Theater A? Mille: Median
EH: Why did you choose the median?
Millie: Because Theater A has the most higher numbers and the mean has a low number and the median has the same kind of
range as the numbers in Theater

Cody lacks conceptual understanding when he is not able to uody lacks conceptual understanaling when he is not able to
understand which statistic represents the typical daily attendance for
the movie theaters Giselle had strong procedural fluency in regard to making accurate do
plots and finding statistical measures. She lacked some concettual plots and finding statistical measures. She lacked some conceptual
understanding in regard to comparing and finding distributions betwe graphs.
Flynn lacked some adaptive reasoning throughout most of the interview since he would often use knowledge of the context of a problem alone
without referring to the data given (e.g., for one task, he answered a question about typical puppy weight by referring to his past
experiences but not the data). His lack of procedural tluency with bas math skills appeared to have contributed to his difificulties.

Developing Proficiency in Grade 6 Common Core Statistics
Kristen Kent \& Ebony Hitch Mentor: Dr. Randall Groth Salisbury University

Theoretical Framework
\qquad We used the Adding it Up framework (National Resear
Councii, 2001, p. 116) to conceptualize mathematical proficiency. It includes the following five strands:
Conceptual Understanding - comprehension of mathematical concepts, operations, and relations
Procedural fluency - skill in carrying accurately, efficiently, and appropriately procedures flexibly, Strategic Competence a ability to formulate, represent, and solve mathematical problems Adaptive reasoning - capacaity for logical thought, reflection, and
explanation, and justification Productive disposition - habitual inclination to see mathematios
as sensible, usetul, and worthwhile, coupled with a belief in as sensible, useful, and worthwhile,
diilgence and one's own efficiency.

Additional Guiding Concepts from the Literature Statistical investigation cycle: Groth \& Bargagliottierature (12$)$
explained how to engage all students in four processes of statistical investigation using the Common Corece by formulating
questions, collecting data, analyzing data and interperting questions, collecting data, analyzing data and interpeting
results. T t the extent possibibe, students should experience all resulits. To the extent possibie, students. should experience all
phases of statistical investigation to understand the nature of
statistics in practice.

Conceptual understanding of measures of center. II is importan
for students to understand the mean and median as concepts for students to understand the mean and median as concepts
and not j just as computations (Bremigan, 2003). In addition to and not just as computations (Bremigan, 2003). In additition to
finding, using, and interperting measures of center, we tocused
on helping students understand the mean's relationship to othe on helping studdents understand the emean's releationship to othe
measures of center, such as median and mode.

CCSSM Learning Progressions for Statistics

The Common Core State Standards Writing team (2011 is

 Ccordance with the Common Core State Standards in in a learning progressions document. Key ideas from the progressions relevant to the instructional sessions for students were:Statistical investigations begin with a question, and students now ee that answers to such questions always involve variability in the

Working with counts or measurements, students display data with
the dot plots sometimes called line plots) that they used in eariier rades (p. 4)
major focus of Grade 6 is characienzation of data distributions by ust have well defined numerical descritions that are commony understood by those using the results of a statistical investigation The simpler ones to calculate and interpret are those based on

Sudents use theirknowedge of division, fractions, and decimals imply called the mean (p. 5).
tudents also learn some of the subtleties of working with the mean, such as its sensitivity to changes in data values and its tendency to Students gain experience in deciding whether the mean or the median is the
posed (p. 5).

Methodology:
Participants \& Procedures
Over the course of ten weeks, we worked with four students completing fifth grade. We had a a 100% participation rate with seven
weekly one-hour sessions in addition to our pre and post assessment interviews. For the privacy of the students,
pseudonyms will be used: Cody, Flynn, Millie, Giselle

Common Core State Standards (CCSS) Instructional Goals
(National Governor's Association for Best Practices \& Council of
Nationa Governor's Association for been
Chief State School Oficers, 2010, p. 45):
Understand that a set of fatat collected to answer a
stataistical question has a distribution which can be describe statisisical question has a a istribution
center, spread, and overal
(CCSApe.
(CSS.MATH.CONTENT. 6. P.A.A.2)

Recognize that a measure of center for a numerical data se summarizes all of is values with a single number, while a meas
Of variation describes how its values vary with a single number
CCSS.MATH.CONTNT.6.S.A.3.). CCSS.MATH.CONTENT.6.SP.A.3).
on a number line, including
CCSS.MATH.CONTENT.G.SP.B.4).
Giving quantitative measurus of center (median and/or
mean) and variability (intercuaarile range and/or mean absolute mean) and variability (interquartile range and/or mean absolute
deviaition), as well as describing any overall pattern and any striking deviations trom the overall pattern with referencence to the context in
wich the data were gathered CCSS.MATH.CONTENT.6.SP.B.5.C
Relating the choice of measures of center and variability to
shape of the data distribution and the context in which the data the shape of the data distribution and the context in w
were gathered. (CCSS.MATH.CONTENT.6.SP.B.5.D)

Salisbury

Data Gathering \& Analysis

Juring each lesson, two cameras were set up to record the entire our session. Following the lesson, we would playback the videe
nd transcribe each word spoken, as well as any emotions and and transcribe each word spoken, as well as any emotions and
movements throughout the lesson. We would then use these ovements throughout the lesson. We would then use these
ranscriptions to find strengths and weaknesses in students' transcripions to ind strengths and weaknesses in studenis
learning in erms of the 5 Strand of Mathematica Proficiency, and
then make data-based conjectures about how to foster students then make data-based conjectures about how to ofoter students's
tearning along each strand. These conjectures became the basis earning along each strand. These conjectur
for developing the following week's lesson.

Empirical Teaching and Learning Trajectory:

Displaying Data (Week 2, 3, 4) Understanding Mean (Week 5, 6) Measures of Center (Week 7, 8)

These lessons focused on having the students generate data from rolling two dice in pairs and represent data
using dot plots. Atter becoming tanilar with displaying data graphically, they were able to organize and compare multitle data sets within a single graph using
TinkerPlots (Konold 2005). This encouraged them to TinkerPlots (Konold 2005). This encouraged them to
identify a middle clump of the data and think about what is considered a typical value for a particular data set.

$$
\begin{aligned}
& \text {.11:1:. } \\
& \text {..!i! if: ! }
\end{aligned}
$$

Students quickly discovered a method to finding the middle data value (median) by crossing off values from procedural fluency. They were also abbe to use descriptive wordst to define the graph's behavior, such as hole, gap, hill, and cluster. Athough most of the
students were able to find the middle clump accurately some students still described the middle using the values on the number line, ,ot the atcaual latat values.
Verall, students developed both conceptual Overall, students developed both conceptual
understanding and strategic competence as anderstanding and strategic competence as they were
able to represent data graphically ysing a dot plot and
identify where most of the data values congregated identify where most of the data values congregated on the graph.

As students gained experience with dot plots and comparing data,
we started discussing differences in the shapes of graphs and we started discussing differences in the shapes of graphs and
how each of the statistical measures (mean, median, and mode) are affected when the data shapess the graph differently. This generated discussion on what the mean is and how it is affected with different data sets. In particular, students began
understanding mean as a number that "evens out" or "balances" a distributuion as they began using snap cubes as data values for
number of tamily memeers in a particular household By number of family members in a paraticulares household. By
redistriuting the snap cubes (or family memeers) they co redistributing the snap cubes (or family members) they could
easily see how the mean represented a "fair share" for the data
set.

Students worked on contrasting the snap cube representation
above with the dot plot representation they had learned earlier above with the dot plot representation they had learned eariier.
Giselle was also able to identify the mode as the highest stack of data values in a dot plot. This generated class discussion about what is most typical and if the mode always represented what was
most typical. In particular, Cody demonstrated multiple gains in most typical. In particular, Cody demonstrated multiple gains in
conceptual understanding as he accurrately identified the middle concepitual understanding as he accurately reconized that the mode is not always the best
clump representation for the graph. Students gained strategic
competence as they were able to explaiai their reasoning through graphs and showing others their methods that supported their
reasoning. Flynn also used the snap cubes to descrie the reasoning. Flynn also used the snap cubes to olescrited the
behavior of the mean, but still had some contusion with the mid behavior of the mean, but still had some confusion with the middle

values being middle data values as opposed to the middle of the | $\begin{array}{l}\text { values being } \\ \text { number line. }\end{array}$ |
| :--- |

As students became more familiar with what the mean represen decide whether or not he the mean was a good representation of the verall data set. This initiated discussion on whether the mean, median, or mode did a better job at representing the data. measures of center to represent different data sets. By the last week, we were able to review majority of the topics covered and make inferences about how and why it is important to use differen
measures of center to describe data. measures of center to describe data.
or example, when 24 Starburst candy were distributed unevenly
amongst the four students and two teachers, students were aske amongst the four students and two teachers, students were aske
of find the average or typical number of candies that each person received. The initial candy distribution was the following: $1,1,1,1$,
1, and 19 . Two students described the mode as the average; Millie tried to find the averagere by finding the as middle betweene the bwest and highest data values while Cody explained that he hought the average was the mean and redistributed the candy eani is not always a good rudenesentation of the typical the value. Overall, students were accurately able to identify the mea

By the last week we were able to review majority of the topics covered and make inferences about how and why it is important to esson, students analyzed a data set showing the salaries of tina ndividuals in a small Itonn: $\$ 0, \$ 0, \$ 0, \$ 0, \$ 0, \$ 0, \$ 0, \$ 0, \$ 200$,
$\$ 200, \$ 200, \$ 200, \$ 200, \$ 200, \$ 200, \$ 30,600$

Post-Assessment Results (Week 9)
Overall students gained conceptual understanding when it came to finding the bes
statistical measure to represent a typical value. In the initial interviews, most Statisicical measuru to erepesent a typical value. In the initial interviews, , gost
students were not able to orovide a rationale for selectina the mean or the media to represent the typical value for a data set. In the final interviews, most students choose between the mean and median by looking for the measure around which
the data clustered. data clustered.

Initial Assessment	Post Assessment
	EH: Which statistic
tation of the numbers or do yo	m
KK: Why do you say median? Flynn: Because you got to put them	EH: Why did you choose the median? Flynn: Because most of the numbers

Students gained procedural fluency and strategic competence in selecting and Students gained procedural fluency and strategic competence in selecting and
constructing data displays. In the initial interviews, students chose to reperesent data
by by showing each datat value with a separate barg, In the final interviews. students
rearesented the same data sets by aggregating the data in dot plots. These represented the same data sets by aggregating the data in dot plo
aggregated displays, helped them locate the centers of data sets.

```
                                    vs.
```

Some students gained productive disposition. Giselle, for example, did not
volunteer her thinking during lessons at the outset of the summer. During the volunteer her thinking during lessons at the outset of the summer. During the las
two instructional sessions, she become a consistent contributor to class discuss In onse ression, she explained the algorithm for the the mean in in terms of the snap cube
In model used to build the idea of mean as a fair share

Reflection

 before

