Introduction

 tudens may strugete and turther the eearning of of students

 2000) Tasass hat involve multipicative reasoning involve wide variet of tstategies and as a result, more time (across grades $3-5$ needs to be dedicated
curriculum for students to be engaged meaningfully (NCTM, 2000).
Through our study we wanted to acknowledge the change that the Common Core
 was togain a better understanding of students' thought processes when appraaching
multipilication problems and to help thei thinking develop. The guiding research question for our study was:

How can students' mathematical proficiency be developed in regard to multiplicative thinking and reasoning?

Products of $3^{\text {rd }}$ grade multiplicative thinking and reasoning

Undergraduates: Silviya Gallo and Nicole Herrin

Methodology - Participants and procedure

Theoretical framework

The common core State Standards switing team (2011) outined how a sudents slearning
 sultions san be categorized into thee evels spop $25-26$.
the entire amountin the mutipiciation

 aking sense of fa siven probolem.
citan

Student Population

de level - students finishing 3rd grac	1 student
Number of participants -4 students Gender - 2 girs 2	Duration of instruction - 71 -hour
	Sessions
	30
	30 minutes written assessment

Common Core State Standards for Mathematics - Operations and Algebraic Thinking CCSS.MATH. CONTENT.3.OA.A.1. - Interpret products of whole numbers, e.g., interpret 5×7 as the tota CCSS.MATH.CONTENT.3.OA.A. $\mathbf{3}$ - Use multiplichation and division within 100 to solve word problems in equations with a symbol for the unknown number to represent the problem. equation relating three whole numbers.
CCSS.MATH.CONTENT.3.OA.B. - A ppply properties of operations as strategies to multiply and divide.

PATHWAYS Cycle of Integrated Teaching and Research

Salisbury

Methodology - Data gathering and analysis re and Post Interview Protocol
stions started by taking a written a assessment wich included a broad range of uestions addressing third grade Common Core Standards. The students completed iterview. During the clinicial interviews we aimed to learn about the students' ${ }^{\prime}$ terviews wests ofrived to to emain enautrat tothematical proficiency. During the clinical iterviews we strived to remain neutral to the students' 'esponses and encouraged
hem to explain their mathematical thinking. We probed the students with follow-up Westions to understand more about the process they use when approaching

Tous of smals four	Thee ene foub bexe of	There are 3 tables in Mrs. Potter's art classroom. There are 2 students sitting at each table. Each student has a box of 5	seual rouso cran, 48
1sin earh many haw		Hoummenemenemersisex	toralans bioun mi
Sole			
		Leable	Stictio
๑ช	comemorn		

Procedures used in Research
corded. We eatennted edtiona session as well as the clinical interiews were video

transcript of the converacration dururing the elesson. We a also nooted dall the dififerenten emotions Analving the the inerenviews - We went through the transcripts to look for evidence of any of Analying the interviews - We went through the transcrits to look for evidence of any of the
 Lesson based on the findings.
Lessons- Each elesson was reated oadress one or more of the Common Core standards, as
ats

Empirical Teaching and Learning Trajectory:

Instructional cluster 3
\qquad

	Post-Assessment Re
udents work from the pre- and post-assessments. We observed student growth in a riety of areas	
beginning, completed the post assessment using more repeated addition to show hiswork. This showed growth in his Conceptual Understanding of the relationship between repeated addition and multiplication.	
- Jake, Gabbie, and Earl all developed Procedural Fluency in skip counting. In the final interview Gabbie showed Level 2 thinking as she transitioned from individually counting skip count by 5 in response to the task shown.	
mathematical representations. In the post assessments she was able to use a newly earned array representation to solve problems (see example below)	
Competence by acquiring knowledge of new Competence by acquiring knowledge of new	
Earl was able to develop Adaptive Reasoning, since he was generally better able toexplain his mathematical reasoning. The excerpt below is Earl explaining how he transitioned between 72 divided by 9 to his answer of $8 \times 9=72$.	
Gabbie demonstrated growth in her Productive Disposition, as she became moreconfident in approaching unfamiliar math problems. She went from saying "I don't know" to attempting to use skills she has developed to try and solve the problem. Jake is strong in his Adaptive Reasoning; he generally enjoyed explaining the proces	

Reflection and discussion

 be able to explicitly use this property without any probing questions, since they did not use it spontaneously to solve problems at any point
The learning progressions were a good base to measure where the students were with the concepts. Most students were able to move into

 It was helpftu to use visual and manipulatives even when students wer
had multiple entry points to solve the problem with roup discussions after.

