Salisbury

Supporting Online Discourse about Proportional Relationships

Introduction

Proportional reasoning is key to the middle school mathematics curriculum (CCSSM, 2010). However, students struggle with differentiating between reasoning additively and multiplicatively (Langrall \& Swafford, 2000). Also, it can be challenging for students to make sense of multiple representations that foster multiplicative reasoning (WilliamsCandek, 2016)
Our challenge was to help students develop proportional reasoning in an online environment. Our research questions were:

1. What technique(s) help to foster online discourse?
2. How does students' proportional reasoning develop during online discourse?

Initial Assessment results (Week 1)
Key Task 1:
The primary focus in this problem was proportional reasoning. Steve, Mike, and Olivia divided the total cost \$6 into 3 lbs . to correctly determine the price per 1 lb . Maya struggled to interpret this problem multiplicatively and added $3+6$ to get 9 and added another 9 to get 18 .

Key Task 2:

The primary focus in this problem was for students to evaluate the given cycling rate to answer the questions. Steve and Olivia showed strength in their ability to reason proportionally by stating that "every 15 minutes is 6 miles" to work through elements of Key Task 2. Mike was able to solve part D by stating, " 1 agree because 75 minutes plus 75 minutes is 150 minutes and if she rode 20 minutes ... that would be adding another 10 ." In part A he had the right reasoning for determining the pace, however he was not able to translate that into how many miles would have been traveled after 15 minutes. Maya, however, had trouble understanding the problem multiplicatively. In Part A, she stated "I minus 20 minus 6" to get 14 minutes, which was not the correct solution.

Literature Review

The Illustrative Mathematics (2020) curriculum requires that seventh graders, "understand ratio concepts and use ratio reasoning to solve real-world and mathematical problems". The literature contains numerous strategies to help students reach this goal. Research-based strategies we used included:

- Double number lines (Watanabe, 2015)
- Discussion Prompts (Sun et. al, 2018), Explicit tables (Burton, 2017)
Function Machines (Reeves, 2006)

Methodology - Participants and procedure
We had 4 students who just finished $7^{\text {th }}$ grade. Their pseudonyms are Steve, Olivia, Mike, and Maya. All students participated in our seven 1hour sessions and pre- and postinterviews.

All interviews and lessons were video-recorded and transcribed via Zoom. We analyzed the lesson videos, using edTPA prompts for planning, implementation, and assessment (SCALE, 2019). Key interview tasks shown below came from the Illustrative Mathematics curriculum (Illustrative Mathematics, 2020).

Key Task 1

Carlos bought 6 pounds
of bananas for $\$ 3.00$
a. What is the price per pound of the bananas that Carlos bought?
b. What quantity of bananas would one dollar buy?
c. Can you share another way to solve part b?

Key Task 2:
Lin rode a bike 20 miles in 150 minutes. If she rode at a constant speed a. How far did she ride in 15 minutes? b. How long did it take her to ride 6 miles?
c. What was her pace in minutes per mile?
d. Ty claims that Lin would have ridden 10 miles in 75 minutes. Do you agree or disagree? Why?

Empirical Teaching and Learning Trajectory:

Post-Assessment Results (Week 9) Key Task 1:
Olivia and Steve's solution to key task 1 did not vary from the pre-assessment. However, Steve was able to give an additional solution to the problem. He provided a solution resembling reasoning done with double number lines over the summer. $\$ 1$ and 1 pound +1 pound which whal 2 equals $\$ 1$ and add 1 pound +1 pound which equals 2 pounds. Mike demonstrated proportional reasoning in Part A even though his solution was not completely correct. He stated that, 3 pounds would be $\$ 1.50$. Mo dice on pound Even though Maya did not solve the task correctly, she began to recognize that multiplication and division were relevant to its solution.

Key Task 2:

Olivia and Steve maintained their ability to reason proportionally and answered the question correctly. Although Mike struggled to find the mileage in part A, he was still able to use good reasoning to answer part D and find the pace. Maya started to reason multiplicatively and no longer did computation with incompatible units (e.g., 10 miles minus 2 minutes).

 group discussions.

