SU DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE SYLLABUS

COSC 411 – Artificial Intelligence

Description: Survey foundational topics in artificial intelligence. Study both exact and probabilistic learning and decision-making frameworks, deterministic and non-deterministic. Consider both historical and state-of-the art techniques using the Python languages. Discuss ethical and social concerns surrounding the use and development of artificial intelligence. Design agents to solve a wide array of problems, using knowledge representation, uncertainly, learning, and communication. Three lecture-hours per week.

Prerequisites: Grade of "C" or better in: COSC 320. COSC 311 recommended. **Required Text:**

• Artificial Intelligence, A Modern Approach (3rd edition), by Stuart Russell and Peter Norvig

	Weeks	
Introduction, Python Basics		2.0
Variables, expressions, functions, classes, library usage, I/O		
Search techniques, game playing		2.0
Uninformed search, heuristics, local search and optimization, adversarial search		
Automated proofs, knowledge representation		2.0
Propositional inference, planning and state-space search, hierarchical planning,		
multi-agent planning, ontology, categories, events, and objects		
Probabilistic Reasoning		2.0
Uncertainty, reasoning over time, utility functions, decision networks, policy iteration		
Machine Learning		2.0
Supervised learning, unsupervised learning, reinforcement learning, learning probabilistic		
models		
Communication and Perception		2.0
Natural language processing, image perception and reconstruction, robotics		
Ethics and Philosophy		1.0
Risks of AI, meaning of intelligent action, directions in AI		
Exams		1.0

EVALUATION

Homework, labs, class participation: 20-30% Projects and presentations: 40-60% Exams and quizzes: 20-40%

NOTE: ONCE A STUDENT HAS RECEIVED CREDIT, INCLUDING TRANSFER CREDIT, FOR A COURSE, CREDIT MAY NOT BE RECEIVED FOR ANY COURSE WITH MATERIAL THAT IS EQUIVALENT TO IT OR IS A PREREQUISITE FOR IT.