The Henson Science Hall opened its doors to thousands of eager students in fall 2002. With state-of-the-art lecture halls and student research labs, this facility is a welcome addition to the SU landscape. At the end of his first semester in the new building, Henson School of Science and Technology Dean Tom Jones reflects on how the building took shape and looks to the future.*

The new Henson Science Hall is one of the largest science buildings in the University System of Maryland at nearly 146,000 square feet. Larger institutions like College Park and Towson have separate buildings for biology, math, chemistry, etc. We didn’t want that. We wanted to get the original five departments of the School of Science back together again in the same building so that the faculty can see each other routinely and talk, which hopefully will foster interdisciplinary projects. We like that students are able to do the same thing and see the faculty together. In other words, we tried to break down the walls and silos of the sciences to get students to think in an interdisciplinary manner.

SU has grown so much in the last three years, however, that some of the faculty in those five departments cannot fit into this new
building. Five faculty in the Department of Mathematics and Computer Science will have to move into the renovated Devilbiss Hall. Nursing and the Health Sciences departments, which have never been on the main campus in their near 30-year history, will also move to Devilbiss Hall.

We designed this new building with the idea of minimizing the number of lecture rooms, thereby maximizing the number of labs. We wanted to remove the classic form of lecture in many courses to the laboratory where a very applied, very interactive kind of relationship could be forged. And so, many of the upper division science courses that used to have three hours of lecture in the classroom followed by three hours in the lab now have all six hours in the lab—we call it blended lecture/lab—where faculty members have many options in getting the material across to their students.

With both teaching and learning going on in the labs, we also made all of the labs as “smart” as we could. The latest teaching technology, with computer projection and instructional systems, has been installed in the labs. Normally, you wouldn’t put smart teaching equipment in laboratories because you don’t expect to be doing a lot of presentations there, but we wanted the faculty lecturing in the lab to be able to go on the Web to show information about various things such as chemical reactions or biological processes while the students are doing their own “thing” in the lab.

Undergraduate research is a cornerstone of the Henson School of Science and Technology. To serve our faculty and students, this building has 20 state-of-the-art labs that are set aside for faculty-student research. These are beautiful facilities with plenty of room and plenty of equipment. They’re offline to teaching and they’re there 24/7 for research by our faculty members working with our students.

I’m especially excited by these research labs. Lack of such space was our biggest drawback in Devilbiss Hall, but in Henson Science Hall, we’ve got the space and we’ve got the equipment. We even have 78 fume hoods in this building, which was a nightmare for the mechanical engineer, but we need them to do...
I think we’re the envy of the state. I can give you a long list of exciting things that are going on here. We have a biologist and an environmental health scientist who are on the verge of having Salisbury and their lab designated by the State of Maryland as THE lab to do Bacterial Source Tracking (BST), a certain process in identifying the source of microorganisms in the environment. For the last two years, Dr. Mark Frana and Dr. Elichia Venzo have received grants from the Maryland Department of the Environment to identify the sources of E. coli, which is a fecal coliform bacteria that is used as an indicator of fecal pollution of waterways. They can actually tell you whether that E. coli came from a deer or a dog or a duck or a human by using DNA technologies and antibiotic resistance.

This is a super project the State of Maryland needs badly because it has been forced to close contaminated waterways—there are no ponds around here you can swim in anymore. This is just the beginning of something I think is really going to be big. They just got another $350,000 grant from the Maryland Department of the Environment to operate next year.

Dr. Mark Holland, the chair of biology, has obtained several patents on his pink-pigment-forming bacteria. These bacteria live on the surfaces of green plants and emit a hormone that causes the plant to grow faster and increase seed germination. They do that because, as the plant grows, it emits a chemical that the bacteria uses to grow. Mark has worked on that symbiotic relationship and he’s found out how to stimulate this bacteria to grow faster and that makes the plant grow faster. With seed companies wanting his process, this could really roll into something big.
We have an incorporated group within geography called the Mapping Sciences Group. They’ve acquired contracts to use their remote sensing and their geographical information system programs to help with a variety of regional issues. To show you how this interdisciplinary process works: The geographers are a part of the \textit{E. coli} project because as our biologists go around and take water samples, that data gets fed to the geographers. Then, through their GIS database, the geographers make three-dimensional maps of the waterways which help show where the \textit{E. coli} is and where it’s coming from.

Salisbury University and, in particular, students pursuing science degrees in the Henson School of Science and Technology are very fortunate to have a new state-of-the-art science laboratory building. The technological revolution is in full swing and SU is perfectly poised with this new facility to prepare its students to be leaders in molding the future of our society through scientific endeavors. The shiny newness of the building and the ability to stock the many laboratories, both teaching and research, with a vast array of brand-new equipment has skyrocketed the motivation of our students to pursue a science career.

Equally as important, this new facility has created an enthusiastic energy in our current faculty and is proving a strong magnet for recruiting new highly qualified science faculty to join us. Never before has the science faculty of SU had the teaching and research lab capabilities that they now have in Henson Science Hall. Cutting-edge research being conducted by our students under the tutelage of our faculty is now an everyday event, whereas before in Devilbiss Hall, such things were the exception.

The technology in nearly every classroom provides our faculty with the ability to use a wide variety of pedagogical approaches in their delivery of course material to the students. We hope that the versatility and technological excellence of Henson Science Hall will encourage and prepare our science students to enter a career in the sciences, whether it be in industry or an academic setting.

<table>
<thead>
<tr>
<th>MAJOR ENDOWMENT/GIFT INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 1988: Richard A. Henson</td>
</tr>
<tr>
<td>July 1998: Richard A. Henson</td>
</tr>
<tr>
<td>Feb. 2000: Guerrieri Family Foundation/State of Maryland Private Donation Incentive Program:</td>
</tr>
<tr>
<td>For New Science Equipment</td>
</tr>
</tbody>
</table>