Developing 4th Graders Multiplicative Thinking

Michelle Ott and Jasmine Murray
Faculty Mentor: Dr. Jennifer Bergner
The Problem: Timed Tests, Drills and Flashcards

- Many individuals recall “learning” multiplication by memorizing facts with the use of:
 - Timed tests
 - Drills
 - Flash cards

- Students who have “learned” multiplication this way often do not retain what they have memorized and lack the ability to regenerate forgotten facts

- Educators who teach multiplication in this way try to move their students rapidly toward determining answers at the expense of helping them reason deeply about the meaning of multiplication (Kling & Bay-Williams, 2015).
Our Purpose and Research Question

Purpose:
- To explore the way in which students think about multiplication
- To intervene to help them develop their mathematical proficiency and a functional conceptualization of multiplication.

Research Question:
- How can students’ mathematical proficiency be developed for multiplication?
Conceptualization of Mathematical Proficiency

Conceptual Understanding (CU): Comprehension of concepts, operations, & relationships

Productive Disposition (PD): Feeling that math is sensible & useful, along with a belief in diligence and one’s own ability

Strategic Competence (SC): Ability to formulate, represent, & solve problems

Adaptive Reasoning (AR): Uses logical thought, reflects, & explains/justifies thinking

Procedural Fluency (PF): Ability to carry out procedures appropriately, accurately, efficiently, & flexibly

Mathematical proficiency can be conceptualized by the five, interwoven strands, each of which must work together to attain proficiency (National Research Council, 2001).
Ideas from Literature Integrated In Our Study

“Three Steps to Mastering Multiplication Facts”
(Kling & Bay-Williams, 2015)

• Students must progress through three phases to master multiplication: model/count to find answer, derive answer using reasoning strategies/known facts, and mastery.
• Encourage strategic thinking and using known facts.
• Use area model to encourage decomposing factors.

“Conceptualizing Division with Remainders”
(Lamberg & Wiest, 2012)

• Have students create/solve their own story problems - requires them to think about the meaning of the operations they want the “solver” to use.
• Physically manipulating objects helps students understand meanings of operations (division).
CCSS Learning Progression for Multiplication

The Common Core State Standards (CCSS) Writing Team (2011) outlined how a student’s learning progresses with regard to multiplication. Students’ solutions and multiplicative development can be categorized into the following three levels:

- **Level 1**: Students count and/or represent the entire amount in the multiplication task.

- **Level 2**: Students use skip counting to solve tasks.

- **Level 3**: Students use higher level multiplicative properties to create and break down problems.
CCSS Learning Progression for Multiplication

Confrey et al. (2012) developed 18 student learning trajectories for the Common Core State Standards for Mathematics (National Governor’s Association for Best Practices & Council of Chief State School Officers, 2010).
Methodology

Participants
- **# of participants:** 4
- **Genders:** 2 girls, 2 boys
- **Pseudonyms for students:** Elliott, Megan, Piper, Trevor
- **Grade Level:** Incoming 4th grade students
- **Participation Rate:** 100% attendance for all 4 students
- **Sessions:**
 - Pre-assessment (30 minute clinical interview for each student)
 - Seven 1-hour instructional sessions
 - Post-assessment (30 minute clinical interview for each student)

Procedure
- Each week, we used the following procedure in our effort to help each student make progress along the trajectory and towards mathematical proficiency in multiplication.

Instructional Cycle
- Analyze and assess students’ data
 - Gather written and recorded data. Transcribe video recording.
- Determine learning goals
- Select tasks and video record session
- Present tasks

Procedure
- Each week, we used the following procedure in our effort to help each student make progress along the trajectory and towards mathematical proficiency in multiplication.
Methodology

Pre and Post Interview: Key Tasks

A pan of brownies that is twelve inches in one direction and two inches in the other is cut into one-inch square pieces. Draw a picture/use a manipulative to show pan of brownies once it has been cut. Without counting 1-by-1, how many brownies are there?

On a school field trip, 72 students will be traveling in 9 vans. Each van will hold an equal number of students. The equation shows a way to determine the number of students that will be in each van.

\[72 \div 9 = ? \]

This equation can be rewritten using a different operation. Place the operation and number pieces we will provide you in the proper boxes.

\[\square \square \square = 72 \]

Suppose there are 4 tanks and 3 fish in each tank. The total number of fish in this situation can be expressed as \(4 \times 3 = 12 \).

a. What is meant in this situation by \(12 \div 3 = 4 \)?
b. What is meant in this situation by \(12 \div 4 = 3 \)?
Methodology

Data Gathering

• Video recorded and transcribed all sessions
• Collected and archived all written work from students

Analysis

• Coded transcripts using five strands of proficiency
• Summarized strengths, weaknesses, & made conjectures about how to address weaknesses during next session
• Evaluated students’ progress with respect to trajectory
Pre-Assessment

All students had attained Level 1 with regards to their multiplicative development and some exhibited Level 2 and 3 reasoning. When determining the product, Piper had to count 1-by-1, while others recalled their multiplication facts or fluently used skip counting to determine the solution. The automatic fact recall did not appear to be consistently accompanied by CU as students had difficulty making the connection between the computed product and the visual representation.

Array Model:
All students struggled with the brownie problem (see above).
- Had to count 1-by-1 to solve
- AR weaknesses (e.g. struggled to apply reasoning used to draw a picture to construct a model and vice versa)
- Difficulty representing with base 10 blocks

Conceptualizing of Division:
One of the most striking observations was Piper’s difficulties with division. She said she was familiar with division, but she had difficulty with each strand.

Michelle: Ok, now, could you represent that as a multiplication number sentence like we did in the last problem?
Megan: Like, 12 times 2 maybe.

Megan demonstrated SC, PF, and CU weaknesses. Using the picture, she said there were 14 brownies. Using the base 10 blocks, she said there were 24.
Empirical Teaching and Learning Trajectory

3.OA.3: Solve x and ÷ word problems involving equal groups, arrays, & measurement quantities.

Lesson 1: Egg Cartons & Multiplication
- Students had difficulty with array model during interview.
- To begin our study of multiplication, we used ideas from an NCTM Illuminations lesson (Willman, 2015).
- Students designed rectangular egg cartons to hold 24 eggs.
- Wrote a multiplication number sentence for each carton.
- Discussed and shared multiplication and division number sentences for each carton.
- Discussed and reasoned to determine who was correct.

Lesson 2: Egg Cartons & Division
- We wanted to provide students with the opportunity to relate the cartons to division and develop CU of the relationship between multiplication and division.
- Students given story problems describing cartons with X number of rows. Egg packaging company had to fill exactly 24 eggs in each carton (24 eggs divided into X rows).
- Students needed work with various division contexts, not just arrays. Lamberg and Weist (2012) emphasized the importance of having students physically divide objects and using the objects to write story problems for various contexts.
- Each student given two sets of manipulatives & used objects to write ÷ word problems.
- Solved and checked their work using objects.
- Partner solved problems.

Lesson 3: Create Your Own Division Story Problems
- During lesson 2, Piper had difficulty with each strand of proficiency. Individualization needed. We will revisit arrays after more understanding has been attained. Students needed work with various division contexts, not just arrays. Lamberg and Weist (2012) emphasized the importance of having students physically divide objects and using the objects to write story problems for various contexts.
- Each student given two sets of manipulatives & used objects to write ÷ word problems.
- Solved and checked their work using objects.
- Partner solved problems.

Lesson 4: How many batches of cookies can we make?
- Megan, Piper, and Trevor showed CU of division. They accurately wrote problems involving “sharing.” Trevor lacked the ability to stop and reflect (AIR). He had difficulty describing a context. More exposure to division contexts was needed. Since none of the students wrote “measurement” problems, we decided to use a context that measuring naturally occurs – baking cookies.
- Each student was assigned an ingredient and determined how many batches they could make using the amount of each ingredient needed for 1 batch and the amount in the “Class Kitchen.”

4.OA.1: Interpret multiplicative comparisons (MC)

Lesson 5: Using MCs to Make Trail Mix
- Students were successful during lesson 4. Piper showed PF, SC, and CU of division. Elliott interpreted context and used division appropriately. Students were ready to learn new application of multiplication-MC. It was important that we used comparisons that were natural from a multiplicative stance (Nunes & Bryant, 1999).
- Interpreted and used MCs to make trail mixes using manipulatives.

Lesson 6: Area & Gardens
- Students showed CU and PF.
- They were ready to readdress arrays and incorporate area. We used Kling and Bay-Williams (2015) ideas to relate multiplication to area and help them develop ability to decompose factors and use distributive property.
- Found area of gardens by decomposing factors.

3.OA.B: Relate multiplication to rectangular area

CAPSTONE EXPERIENCE
3.OA.7: Solve 2-step word problems with +, −, ∗, ÷.

Lesson 7: Party Planning
- We wanted to incorporate each of the previous standards and allow the students to use a strategy of their choice. Previously, students did not have reason to use each operation because the focus was either x or ÷. We decided to have students engage in such reasoning by solving multi-step/multi-operation word problems. We based many of our problems on examples in the Common Core State Standards Writing Team’s (2011) progressions document.
- Cake: found the area of a sheet cake and determined the number of slices after being cut.
- Goodie bags and balloons: solved multi-step/multi-operation story problems relating to the objects in the bags and the birthday balloons.
Empirical Teaching and Learning Trajectory

3.OA.3: Solve \(x \) and \(\div \) word problems involving equal groups, arrays, & measurement quantities

4.OA.1: Interpret multiplicative comparisons (MC)

Lesson 1: Egg Cartons & Multiplication
- Students had difficulty with array model during interview.
- To begin our study of multiplication, we used ideas from an NCTM Illuminations lesson (Willman, 2015).
- Students designed rectangular egg cartons to hold 24 eggs.
- Wrote a multiplication number sentence for each carton.
- Discussed and shared multiplication and division number sentences for each carton.
- Discussed and reasoned to determine who was correct.

Lesson 2: Egg Cartons & Division
- We wanted to provide students with the opportunity to relate the cartons to division and develop an understanding of the relationship between multiplication and division.
- Students given story problems describing cartons with \(X \) number of rows. Egg packaging company had to fit exactly \(24 \) eggs in each carton (24 eggs divided into \(X \) rows).
- Selected and shared multiplication and division number sentences for each carton.
- Discussed and reasoned to determine who was correct.

Lesson 3: Create Your Own Division Story Problems
- During lesson 2, Piper had difficulty with each strand of proficiency. Individualization needed. We will revisit arrays after more understanding has been attained. Students needed work with various division contexts, not just arrays. Lamberg and Weist (2012) emphasized the importance of having students physically divide objects and using the objects to write story problems for various contexts.
- Each student given two bags of manipulatives & used objects to write \(\div \) word problems.
- Solved and checked their work using objects.
- Partner solved problems.

Lesson 4: How many batches of cookies can we make?
- Megan, Piper, and Trevor showed CU of division. They accurately wrote problems involving “sharing.” Trevor lacked the ability to stop and reflect (AIR). Elliott lacked CU. He had difficulty describing a context. More exposure to division contexts was needed. Since each of the students wrote “measurement” problems, we decided to use a context that measuring naturally occurs – baking cookies.
- Each student was assigned an ingredient and determined how many batches they could make using the amount of each ingredient needed for 1 batch and amount in the “Class Kitchen.

3.OA.B: Relate multiplication to rectangular area

CAPSTONE EXPERIENCE
3.OA.7: Solve 2-step word problems with +, -, x, ÷

Lesson 7: Party Planning
- We wanted to incorporate each of the previous standards and allow the students to use a strategy of their choice. Previously, students did not have to reason when to use each operation because the focus was either \(x \) or \(\div \). We decided to have students engage in such reasoning by solving multi-step/multi-operation word problems. We based many of our problems on examples in the Common Core State Standards Writing Team’s (2011) progressions document.
- Cake: found the area of a sheet cake and determined the number of slices after being cut.
- Goodie bags and balloons: solved multi-step/multi-operation story problems relating to the objects in the bags and the birthday balloons.
Empirical Teaching and Learning Trajectory

Lesson 2 Work Sample: Piper demonstrated SC, PF, and CU weaknesses. She was the only student who had extreme difficulty representing the problems symbolically.

Lesson 3 Work Sample: Megan demonstrated CU of division. She wrote a “sharing” division word problem.

Lesson 3 Work Sample: Trevor demonstrated an AR weakness. He is very procedurally fluent, but fails to reflect on his number selection. His arrangement does not match his context.

Lesson 4 Work Sample: Piper demonstrated PF, SC, and CU by accurately representing and solving the problem.

3.OA.3: Solve x and ÷ word problems involving equal groups, arrays, & measurement quantities.
Empirical Teaching and Learning Trajectory

3.OA.3: Solve x and ÷ word problems involving equal groups, arrays, & measurement quantities

4.OA.1: Interpret multiplicative comparisons (MC)

3.OA.B: Relate multiplication to rectangular area

CAPSTONE EXPERIENCE
3.OA.7: Solve 2-step word problems with +, -, x, ÷

Lesson 1: Egg Cartons & Multiplication
Students had difficulty with array model during interview. To begin our study of multiplication, we used ideas from NCTM Illuminations lesson (Willman, 2015).
- Students designed rectangular egg cartons to hold 24 eggs
- Wrote a multiplication number sentence for each carton
- Discussed and reasoned to determine who was correct

Lesson 2: Egg Cartons & Division
We wanted to provide students with the opportunity to relate the cartons to division and develop CU of the relationship between multiplication and division.
- Students given story problems describing cartons with X number of rows. Egg packaging company had to fit exactly 24 eggs in each carton (24 eggs divided into X rows)
- Selected and shared multiplication and division number sentences for each carton
- Discussed and reasoned to determine who was correct

Lesson 3: Create Your Own Division Story Problems
During lesson 2, Piper had difficulty with each strand of proficiency. Individualization needed.
- We revisit arrays after more understanding has been attained. Students needed work with various division contexts, not just arrays. Lamberg and Weist (2012) emphasized the importance of having students physically divide objects and use the objects to write story problems for various contexts.
- Each student given two bags of manipulatives & used objects to write ÷ word problems
- Solved and checked their work using objects
- Partner solved problem

Lesson 4: How many batches of cookies can we make?
Megan, Piper, and Trevor showed CU of division. They accurately wrote problems involving “sharing.” Trevor lacked the ability to stop and reflect (AR). Elliott lacked CU. He had difficulty describing a context. More exposure to division contexts was needed. Some students required “measurement” problems, we decided to use a context that measuring naturally occurs — baking cookies.
- Each student was assigned an ingredient and determined how many batches they could make using the amount of each ingredient needed for 1 batch and amount in the “Class Kitchen”

Lesson 5: Using MC to Make Trail Mix
Students were successful during lesson 4. Piper showed PF, SC, and CU of division. Elliott interpreted context and used division appropriately. Students were ready to learn new application of multiplication-MC. It was important that we used comparisons that were natural from a multiplicative stance (Nunes & Bryant, 1999).
- Interpreted and used MCs to make trail mixes using manipulatives

Lesson 6: Area & Gardens
Students showed CU and PF.
- They were ready to readarray area and incorporate area. We used Kling and Bay-Williams (2015) ideas to relate multiplication to area and help them develop ability to decompose factors and use distributive property.
- Found area of gardens by decomposing
- Partner worked on factors

Lesson 7: Party Planning
We wanted to incorporate each of the previous standards and allow the students to use a strategy of their choice. Previously, students did not have to reason when to use each operation because the focus was either x or ÷. We decided to have students engage in such reasoning by solving multi-step/multi-operation word problems. We based many of our problems on examples in the Common Core State Standards Writing Team’s (2011) progressions document.
- Cake: found the area of a sheet cake and determined the number of slices after being cut
- Goodie bags and balloons: solved multi-step/multi-operation story problems relating to the objects in the bags and the birthday balloons.
Empirical Teaching and Learning Trajectory

Lesson 5 Work Sample: One recipe called for “three times as many pretzels as M&Ms (1 cup).” Megan demonstrated PF by accurately interpreting the MC and determining the correct number of cups of pretzels.
Empirical Teaching and Learning Trajectory

3.OA.3: Solve x and ÷ word problems involving equal groups, arrays, & measurement quantities

Lesson 1: Egg Cartons & Multiplication
Students had difficulty with array model during interview.
To begin our study of multiplication, we used ideas from an NCTM Illuminations lesson (Willman, 2015).
- Students designed rectangular egg cartons to hold 24 eggs.
- Wrote a multiplication number sentence for each carton.
- Discussed and determined who was correct.

Lesson 2: Egg Cartons & Division
We wanted to provide students with the opportunity to relate the cartons to division and develop the relationship between multiplication and division.
- Students given story problems describing cartons with X number of rows.
- Egg packaging company had to fit exactly 24 eggs in each carton (24 eggs divided into X rows).
- Students needed work with various division contexts, not just arrays. Lamberg and Weist (2012) emphasized the importance of having students physically divide objects and using the objects to write story problems for various contexts.
- Each student given two bags of manipulatives & used objects to write ÷ word problems.
- Solved and checked their work using objects.

Lesson 3: Create Your Own Division Story Problems
During lesson 2, Piper had difficulty with each strand of proficiency. Individualization was needed. We will revisit arrays after more understanding has been attained. Students worked with various division contexts, not just arrays. Lamberg and Weist (2012) emphasized the importance of having students physically divide objects and using the objects to write story problems for various contexts.
- Each student given two bags of manipulatives & used objects to write ÷ word problems.
- Solved and checked their work using objects.
- Partner solved problem.

CAPSTONE EXPERIENCE
3.OA.7: Solve 2-step word problems with +, −, ×, ÷.

Lesson 4: How many batches of cookies can we make?
Megan, Piper, and Trevor showed CU of division. They accurately wrote problems involving “sharing.” Trevor lacked the ability to stop and reflect (AR). He had difficulty describing a context. More exposure to division contexts was needed. Since one of the students wrote “measurement” problems, we decided to use a context that measuring naturally occurs – baking cookies.
- Each student was assigned an ingredient and determined how many batches they could make using the amount of each ingredient needed for 1 batch and amount in the “Class Kitchens”.

Lesson 5: Using MCs to Make Trail Mix
Students were successful during lesson 4. Piper showed PF, SC, and CU of division. Elliott interpreted context and used division appropriately. Students were ready to learn new application of multiplication-MC.
- Interpreted and used MCs to make trail mixes using manipulatives.

Lesson 6: Area & Gardens
Students showed CU and PF.
- They were ready to address arrays and incorporate area.
- We used Kling and Bay-Williams (2015) ideas to relate multiplication to area and helped them develop ability to decompose factors and use distributive property.
- Found area of gardens by decomposing factors.

Lesson 7: Party Planning
We wanted to incorporate each of the previous standards and allow the students to use a strategy of their choice. Previously, students did not have to reason when to use each operation because the focus was either x or ÷. We decided to have students engage in such reasoning by solving multi-step/multi-operation word problems. We based many of our problems on examples in the Common Core State Standards Writing Team’s (2011) progressions document.
- Cake: found the area of a sheet cake and determined the number of slices after being cut.
- Goodie bags and balloons: solved multi-step/multi-operation story problems relating to the objects in the bags and the birthday balloons.
Empirical Teaching and Learning Trajectory

Lesson 6 Work Sample: Piper decomposed 18 and applied the distributive property to determine the area.

Farmer Eli wants to plant a pumpkin patch. Each pumpkin needs a 1 foot wide by 1 foot long space to grow. Farmer Piper thinks the patch should be 2 feet wide and 18 feet long. If they decide to plant the pumpkin patch, how much space will they need?
Empirical Teaching and Learning Trajectory

3.OA.3: Solve x and ÷ word problems involving equal groups, arrays, & measurement quantities

Lesson 1: Egg Cartons & Multiplication
Students had difficulty with array model during interview. To begin our study of multiplication, we used ideas from an NCTM Illuminations lesson (Willman, 2015).
- Students designed rectangular egg cartons to hold 24 eggs
- Wrote a multiplication number sentence for each carton

Lesson 2: Egg Cartons & Division
We wanted to provide students with the opportunity to relate the cartons to division and develop CU of the relationship between multiplication and division.
- Students given story problems describing cartons with x number of rows. Egg packaging company had to fit exactly 24 eggs in each carton (24 eggs divided into X rows)
- Selected and shared multiplication and division number sentences for each carton
- Discussed and reasoned to determine who was correct

Lesson 3: Create Your Own Division Story Problems
During lesson 2, Piper had difficulty with each strand of proficiency, individualization needed. We will revisit arrays after more understanding has been attained. Students needed work with various division contexts, not just arrays. Lamberg and Weist (2012) emphasized the importance of having students physically divide objects and using the objects to write story problems for various contexts.
- Each student given two bags of manipulatives & used objects to write ÷ word problems
- Solved and checked their work using objects
- Partner solved problem

Lesson 4: How many batches of cookies can we make?
Megan, Piper, and Trevor showed CU of division. They accurately wrote problems involving “sharing.” Trevor lacked the ability to stop and reflect (AIR). Elliott lacked CU. He had difficulty describing a context. More exposure to division contexts was needed. Some of the students wrote “measurement” problems, we decided to use a context that measuring naturally occurs—baking cookies.
- Each student was assigned an ingredient and determined how many batches they could make using the amount of each ingredient needed for 1 batch and amount in the “Class Kitchens”

CAPSTONE EXPERIENCE
3.OA.7: Solve 2-step word problems with +, − , x, ÷

Lesson 7: Party Planning
We wanted to incorporate each of the previous standards and allow the students to use a strategy of their choice. Previously, students did not have to reason when to use each operation because the focus was either x or ÷. We decided to have students engage in such reasoning by solving multi-step/multi-operation word problems. We based many of our problems on examples in the Common Core State Standards Writing Team’s (2011) progressions document.
- Cake: found the area of a sheet cake and determined the number of slices after being cut
- Goodie bags and balloons: solved multi-step/multi-operation word problems relating to the objects in the bags and the birthday balloons
Lesson 7 Work Sample: A 9”x 21” sheet cake was cut into 1 square inch slices. Elliott decomposed 9 and 21, solved the partial products, and determined the area and number of slices for the entire cake by adding the partial products. He demonstrated SC, PF, and CU.
Post-Assessment

All students exhibited Level 2 or Level 3 reasoning. Rather than counting 1-by-1, Piper used skip counting to determine the product. Megan and Trevor’s automatic fact recall seemed to be accompanied more frequently by CU as they were able to identify the connection between the fact and their visual representation. All students demonstrated stronger AR. Elliott, Megan, and Tyler reflected on their work and identified a computational error they had made. Not only did Piper show stronger AR, but she also showed SC as she was able to explain her answers using the representations she created.

Array Model:
All students accurately represented the brownie pan using a picture or manipulatives. They skip counted or multiplied 2 times 12 and provided accurate reasoning.

Conceptualization of Division:
Piper showed a much stronger conceptualization of division. Without being probed to do so, she used manipulatives to solve the school field trip problem.

Megan demonstrated SC, PF, and CU. Using her picture and the base 10 blocks, she said there were 24 brownies in the pan.

Piper demonstrated SC with and CU of division. She knew 9 times something would yield 72. She counted out 72 plastic objects and evenly divided them into 9 piles (depicted above). From this, she reasoned 9 times 8 equals 72.
Reflection/Discussion

Most challenging standard for the students to attain: CCSSM 3.OA.7:
- Must know when to multiply/divide
- Must be able to pull from a repertoire of strategies to efficiently solve problems

We helped our students attain this standard by:
- Basing each lesson on a real-world context
- Posing tasks in which it would be extremely inefficient to count 1-by-1 or skip count

As earlier work indicates, Level 3 reasoning is the most difficulty level for students to attain.
- Initially, Elliott, Megan, and Trevor only exhibited some Level 3 reasoning.
- Piper did not use any Level 3 reasoning

By the end of our sessions, they frequently used more sophisticated strategies that invoked the distributive and associative properties. Piper demonstrated Level 3 reasoning during post interview.

Educators who aim to help their students attain 3.OA.7 could keep in mind:
- **Fluency is not measured by speed**, but by one’s ability to apply the properties and strategies they previously learned throughout the trajectory.
- 3.OA.7 is continually developed as students advance along the portion of the trajectory we have presented
- Important for educators to help students relate multiplication to rectangular area (3.OA.B).
 - While establishing this relationship, students **can develop the strategy of decomposing a factor to determine the product**, a strategy that can be used in any context, not just area.
References

