The Twenty-Ninth Annual
Eastern Shore High School Mathematics Competition

November 8, 2012

Individual Contest Exam

Instructions
There are twenty problems on this exam. Select the best answer for each problem.

Your score will be the number of correct answers that you select.
There is no penalty for incorrect answers.

The use of a calculator is not permitted on this exam.

In the event of tie scores, #18, #19 and #20 will be used as tiebreakers.
1. Suppose $f \circ g(x) = x^2 - x + 1$ and $f(x) = x^2 + x + 1$. $g(x)$ is
 (a) $-x$ (b) $x - 1$ (c) $1 - x$ (d) Both (a) and (b) (e) Both (a) and (c)

2. The image below shows an equilateral triangle with an inscribed circle.

![Equilateral Triangle with Inscribed Circle]

Suppose the height of the triangle is 18. The radius of the inscribed circle is
 (a) $3\sqrt{3}$ (b) 6 (c) $4\sqrt{3}$ (d) $3\sqrt{6}$ (e) 8

3. Suppose $\log_2 x + 2 \log_4 x + 3 \log_8 x + 4 \log_{16} x + 5 \log_{32} x = 20$. Solve for x.
 (a) 2 (b) 4 (c) 8 (d) 16 (e) 32

4. Let a and b be nonzero real numbers such that $a > b$. Which of the following must be true?
 (a) $(a + 2)^3 > (b + 2)^3$ (b) $\sqrt{|a|} > \sqrt{|b|}$ (c) $\sin(a) > \sin(b)$ (d) $\frac{a}{b} > 1$ (e) $a^2 > b^2$

5. Suppose a whole number n is quadrupled. Then, $\frac{1}{\sqrt[4]{n}}$ is
 (a) halved (b) doubled (c) quartered (d) quadrupled (e) None of these

6. The graph of $y = \sec x$ will coincide with the graph of $y = \sec(x - \frac{1}{2} \pi)$ if the graph of $y = \sec x$ is shifted to the
 (a) left $\frac{1}{2} \pi$ units (b) right $\frac{1}{2} \pi$ units (c) left 2π units (d) right 2π units (e) left π units

7. In the decimal expansion of $3^{2012} - 2^{2012}$, what digit is in the units place?
 (a) 1 (b) 3 (c) 5 (d) 7 (e) 9

8. A triangle with vertices (10, 4), (14, 4) and (14, 8) is reflected over the line $y = x$. The resulting image is then reflected over the y-axis. The coordinates of the final image of the vertex at (14, 4) are
 (a) (-4, 14) (b) (-14, -4) (c) (-4, -14) (d) (4, -14) (e) (14, 4)
9. Suppose \(a \) and \(c \) are given positive integers. For which of the following values of \(b \) can \(ax^2 + bx + c \) always be factored into linear factors using **only integers**?

(a) \(b = \sqrt{2ac} \)
(b) \(b = \sqrt{4ac} \)
(c) \(b = 0 \)
(d) \(b = ac + 1 \)
(e) \(b = -2a \)

10. What choice of \(b \) will result in the two triangles below having the same area?
Note: figures may not be drawn to scale.

![Triangles](image)

(a) 5
(b) 6
(c) 12
(d) 24
(e) 30

11. How many real solutions \((x, y) \) does the following pair of equations have?

\[
\begin{align*}
y &= (x - 5)^2 + 3 \\
y &= -(x - 5)^2 + 17
\end{align*}
\]

(a) 0
(b) 1
(c) 2
(d) 3
(e) None of these

12. Suppose all Gigglers boggle. Which of the following must be true?

I. If it is a Giggler, it boggles.
II. If it boggles, it is a Giggler.
III. All those who boggle are Gigglers.
IV. No one who does not boggle is a Giggler.
V. If it doesn’t boggle, it is not a Giggler.

(a) All all of these must be true
(b) Only I
(c) Only III
(d) Only I, IV, and V
(e) Only II and III

13. The digits 1 through 5 are shuffled and a five digit number is written down. Each digit is used exactly once. What is the probability that the number is divisible by 2 or 5?

(a) \(\frac{1}{120} \)
(b) \(\frac{2}{5} \)
(c) \(\frac{1}{2} \)
(d) \(\frac{3}{5} \)
(e) None of these
14. In the figure below, the shaded region represents which of the following?

(a) $A \cap B \cap C'$ (b) $B \cap (C \cup A)'$ (c) $B \cap (A \cup C')$ (d) $(B \cap C)'$ (e) $B \cap C''$

15. Define a sequence of integers such that the first term of the sequence is 2, and the sequence is then continued by alternately multiplying by 2 and subtracting 1. The first several terms of the sequence, found in this way, are 2, 4, 3, 6, 5, 10, 9, 18, 17, 34, 33, 66, ...

What is the value of the first term in the sequence which is greater than 2012?

(a) 2014 (b) 2026 (c) 2038 (d) 2050 (e) 2062

16. There are 5 boys and 3 girls in a class. The teacher selects two students from the class at random. Which of the following statements is correct?

(a) $P(\text{two boys are selected}) > P(\text{exactly one boy is selected})$
(b) $P(\text{two boys are selected}) > P(\text{at least one girl is selected})$
(c) $P(\text{one boy and one girl are selected}) > P(\text{at least one girl is selected})$
(d) None of these statements is correct.
(e) All of these statements are correct.

17. Suppose Tullie walks 3 mph and Harriet walks 5mph. Tullie starts walking at noon and Harriet starts walking at 1pm. After every 10 miles, Harriet takes a rest for 1 hour. At 1 pm, Jennifer begins to check on their progress, every hour, on the hour. At what time does she see them together for the second time?

(a) 4 pm (b) 5 pm (c) 9 pm (d) 10 pm (e) None of these

18. Rectangle $ABCD$ has area 60 units^2. P, Q, R, and S are the midpoints of the respective sides as shown in the figure below.

What is the area of the shaded region?

(a) 7.5 units^2 (b) 10 units^2 (c) 12 units^2 (d) 15 units^2 (e) 20 units^2
19. Consider a triangle with one side of length 16 and one side of length 20 such that the measure of an angle opposite one of these two sides is 30 degrees. How many triangles satisfy these conditions?
(a) 0 (b) 1 (c) 2 (d) 3 (e) Cannot be determined

20. Suppose a is the sixth term of a non-constant geometric sequence and b is the ninth term. The first term of the sequence is
(a) $\left(\frac{a^8}{b^5}\right)^{1/3}$ (b) $\frac{8a - 5b}{3}$ (c) $\frac{4a - 5b}{3}$ (d) $\frac{1}{3} \left(\frac{a^8}{b^5}\right)$ (e) $\left(\frac{b}{a}\right)^{1/3}$